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SUMMARY

Incompressible turbulent �ow past a long square cylinder is investigated using large eddy simulations
(LES). Results are presented and compared with available experimental databases for a Reynolds num-
ber Red = 22 000. The problem served as one of the validation cases for the development of a numerical
code designed for e�cient, parallel, three-dimensional N-S computations in complex geometrical con-
�gurations. In contrast with previous studies, the geometrical de�nition of the problem is established
by the immersed boundary concept (IMB) while pressure solution is performed by a fast, fully parallel
direct pressure solver. Calculations were performed with the widely applied Smagorinsky turbulence
model and the �ltered structure function model (FSF) which has not been previously applied to the
�ow case under consideration. In order to assess the potential of LES at its lowest (RANS), and high-
est (DNS) limit, di�erent numerical resolutions were examined. Depending on the available resolution,
either no-slip conditions or a modi�ed Werner and Wengle approximate wall boundary condition was
used. The predicted mean velocity and �uctuation pro�les, force statistics and Strouhal numbers were
found to be in very good agreement with the experimental data sets. Analysis of the results indicates
that for time varying blu�-bodies �ows that involve complex �ow phenomena, successful large eddy
simulations are not just possible, but can also achieve an excellent quality of results at a relatively low
cost. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow around cylinders is a �ow regime that frequently appears in various internal and ex-
ternal �ows like heat exchangers, electronic devices, �ow metres, buildings and other structural
elements. It also forms one of the basic problems in aerodynamics because of the alternating
forces that act on the body. Various experimental and numerical studies have been conducted
in the literature on the �ow around cylinders [1, 2]. This is mainly due to the orthogonal
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geometrical con�guration that can be treated with relatively simple grids. However, that geo-
metric simplicity by no means implies a simple �ow topology at the Re number considered.
Several complex physical mechanisms appear in a periodical manner, like the formation of
forced shear layers at the upwind corners, separation, recirculation, vortex shedding and even-
tual wake formation and growth behind the body. These �ow patterns are building blocks
for most of the turbulent �ows, and pose several di�culties for their experimental [3] or
numerical [4] study.
For a wake �ow like the one considered, the majority of RANS approaches fails to represent

the above-mentioned �ow phenomena accurately. Most of the �− � models used in the frame
of RANS approach tend to overpredict the length of the recirculation region and require
several modi�cations in order to reproduce the experimental observations [1]. For the DNS
approach on the other hand, the Re number restriction is more severe and for the particular
problem it is associated with a considerable cost. For these reasons the �ow case was chosen
by a group of researchers [5] as a benchmark test case in the frame of LES. None of the
researchers though, used the immersed boundary concept to account for the geometry, nor the
�ltered structure function models [6] or the direct pressure solution presented in the present
study.
The main targets of the present work are to (a) verify the potential of the IMB method

for time-varying �ows (b) verify and expand the predictive capability of the FSF models and
advanced wall models for complex �ows (c) demonstrate that appropriate choices on code
structure, implementation and development techniques can lead to very successful low-cost
simulations that can be easily performed even on present-day personal computers.

2. TURBULENCE MODELS

The �rst simulation attempts were done using the simple Smagorinsky turbulence model [7]
which is very well documented and widely applied. When more advanced closure procedures
are applied, the usual choice by most of the researchers is the dynamic model [1, 5]. The
latter is an extension of the Smagorinsky model which adjusts the value of the Smagorinsky
constant locally. The �ltered structure function model presented in the present study has been
very successfully applied for jets, channels [8] and space developing �ows [6] but not for
time varying or recirculating �ows. It should be noted that in the frame of LES, for the �ow
under test none of the studies conducted in the past employed the use of the FSF turbulence
model presented here.
Therefore, in the present study apart from the Smagorinsky model it was decided to examine

also the predictive capability of the FSF model for the �ow past a rectangular cylinder. Both
models used follow a Boussinesq’s type eddy viscosity assumption for the closure of the
subgrid scale stresses �ij according to

�ij=−2�t �Sij (1)

where �Sij is the strain rate tensor of the resolved �eld. For the Smagorinsky model the
turbulent viscosity �t was computed from

�t = (Cs ��Dz)
2
√
�Sij �Sij (2)
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where �� is a grid related �lter width and Cs the Smagorinsky constant. For the present
problem, the e�ect of the constant Cs was investigated in the range [0:08; 0:12]. In order to
recover the correct asymptotic behaviour close to solid boundaries, damping was introduced
through the function Dz. For the cases presented here Van Driest type of damping was used
in the form

Dz=[1− e−(z+=A+)�]� and z+ =
zu�
�

(3)

with A+ =25. The constants (�; �) of Equation (3) adjust the type of damping and for the
present study they were �xed to (1; 1). The estimation of the non-dimensional wall distance
z+ was based on the normal distance and the instantaneous wall shear stress �w of the closest
elementary boundary surface. The potential of the Smagorinsky model is mainly restricted by
the sensitivity on the speci�cation of the constant Cs and the empirical introduction of wall
damping.
The �ltered structure function model evolved from the structure function model of Metais

and Lesieur [9]. Ducros et al. [6] proposed the application of a high-pass �lter in order
to suppress large-scale motion and obtain a better estimation of the energy content at the
unresolved scales. In the present study, a Laplacian �lter was applied iteratively three times on
the velocity �eld. The subsequent computation of the second-order �ltered structure function
�F2( �u) was performed in three dimensions from the �ltered velocity �eld �u(3) according to

�F (3)2 (x; ��; t) =
1
6
[‖ �u(3)i+1; j; k − �u(3)i; j; k‖2 + ‖ �u(3)i−1; j; k − �u(3)i; j; k‖2

+ ‖ �u(3)i; j+1; k − �u(3)i; j; k‖2 + ‖ �u(3)i; j; k − �u(3)i; j−1; k‖2

+ ‖ �u(3)i; j; k+1 − �u(3)i; j; k‖2 + ‖ �u(3)i; j; k − �u(3)i; j; k−1‖2] (4)

in discretized form. Close to solid boundaries a two-dimensional version of the model was
applied depending on the orientation of the boundary surface [8]. In all cases, the computation
of the structure function took into account grid non-uniformities [10]. The turbulent viscosity
was �nally computed according to

�FSF� (x; t)=CFSF ��[ �F
(3)
2 (x; ��; t)]

1=2 (5)

where CFSF =0:0014C
−3=2
K with CK =0:417 being the Kolmogorov constant. The great advan-

tage of the FSF model is that although constants are used the model is not sensitive to their
speci�cation. Additionally, the FSF model is appropriate for the transitional character of the
�ow and as it was implemented in the present study it has the correct limiting behaviour
close to solid boundaries.

3. NUMERICAL METHOD

One of the main challenges in simulating turbulent �ows in geometrically complex domains,
is the accurate and fast pressure solution which is usually the most computationally intensive
procedure. LES computations are usually performed in very large grids (of the order of
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million points) where accurate elliptical solutions are required for thousands of time steps.
Therefore, especially in LES apart from geometric �exibility the solvers should also meet the
crucial requirements of e�cient and parallel execution. The N–S solver developed is capable
of meeting these requirements simultaneously.
The rationale behind the design of the code was the use of e�cient numerical techniques,

so that large-scale computations can be performed using limited computer resources. The
numerical method is based on the fractional step technique of Kim and Moin [11]. A staggered
variable arrangement is adopted, on structured rectangular grids. The conservation equations
for momentum and the derived Poisson’s equation for pressure correction are discretized using
simple second-order central di�erences for all terms. Second-order accuracy is preserved at
the boundaries of the computational domain, using suitably modi�ed boundary conditions.
Explicit time advancement was used for all terms, based on the Adams–Bashforth scheme,
using a constant time step �t.
The core of the numerical code is a fast parallel direct Poisson’s solver, which is a mod-

i�ed version of the public domain software package FISHPAK [12–14]. The latter was �rst
heavily modi�ed to allow the solution in three-dimensional domains with stretched grids
in two directions. Later the solver was optimized and fully parallelized for shared mem-
ory architectures. The parallelization strategy was operation oriented. Considering a direct
solution on an (Nx,Ny,Nz) computational box, the forward and inverse FFT operations are
performed in parallel in (x–y) planes. Similarly, the actual pressure solution on mutually
independent two-dimensional Helmholtz planes, is treated naturally in parallel (x–z) planes.
The above-mentioned implementation technique eliminates load imbalance and achieves an
excellent parallel performance. The full details of the numerical technique can be found in
Reference [15].
A special storage procedure was adopted in order to improve data locality and domain

identi�cation. The computational variables are stored in one-dimensional arrays exclusively.
The cells that correspond to the internal �uid part of the domain (denoted as active) are stored
�rst. The following memory entries are occupied by �ctitious inactive cells that compose the
domain’s boundary surfaces. These cells are sequentially grouped and stored surfacewise. That
storage scheme largely simpli�es the identi�cation of various parts of the domain eliminat-
ing the use of expensive algorithms (including IF...THEN statements) to identify boundary
surfaces. That �nite-element-type numbering minimizes storage requirements since only the
active part of the computation is stored in memory. The technique requires the explicit de�ni-
tion of neighbours, through the storage of extra integer arrays. However, the extra computing
resources required are negligible compared with the bene�ts of the topological �exibility and
robustness of the algorithm. The physical domain is mapped onto the computational domain in
such a way that when solid bodies exist, only the �ow domain is kept in memory in contrast
with three-dimensional representations where the full rectangular domain has to be stored.
Considering the �ne grid that is usually employed close to obstacles, the current method can
save large amounts of physical memory.
The resulting code requires approximately 150 Mb of physical memory and 2:5 GFlops=

iter per million computing nodes. Execution performance was 1�s=node=iter on 8 processors in
UNIX environment (V-class HP-9000, HP-UX 11.0), and 3�s=node=iter on personal computers
(PIII-800MHz, W2000). The e�ciency of parallel execution was measured 0.87% on 8 CPUs
(speedup of ∼ 7). Using Amdahl’s law [16] it can be easily shown that parallel implementation
reached 97%, which corresponds to a maximum theoretical acceleration of 34. At the moment,
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any type of orthogonal geometry can be encountered, while the extension to �ows over
geometrically arbitrary bodies and moving boundaries is under development.

3.1. Immersed boundary method

The geometric �exibility of the developed solver results from the adoption of the immersed
boundary concept, and various elements from �nite-volume and �nite-element formulations.
The immersed boundary concept (IMB) method was originally presented in the pioneering
work of Peskin [17]. More recently, a simpli�ed version of the method was presented [18, 19].
The basic idea of the method lies on the de�nition of the solid (either moving or not) bound-
aries. Instead of using complicated boundary �tted grids to de�ne the geometrical con�gura-
tion, the immersed boundary method actually mimics the presence of solid bodies by means
of suitably de�ned body forces applied to the discretized set of the momentum equations.
The N-S set of equations allows the speci�cation of such forcing terms which are introduced
through the boundary conditions and inserted as source terms i.e.

Du
Dt
=−∇P +∇ · [∇u] + F (6)

The body force F is computed at every time step, so that the velocity �eld on an arbitrary
surface S is driven to a speci�ed value �S. In general that surface can move and does not
necessarily coincide with a grid line. However, in case of a stationary solid body with �S =0,
the implementation is much simpler, and the discretized form of Equation (6) requires mini-
mum extra e�ort to account for the presence of one or more bodies [19]. Thus for the cells
on the boundary �,

un+1 = un +�t(Rhs+ F)=�S (7)

where Rhs includes all the pressure gradient, advection and di�usion terms. In order to drive
the velocity �eld of the next time step un+1, to the desired level �S, it is su�cient to formulate
the source term F of the N-S Equation (6) as

F=−Rhs+ �S − u
�t

(8)

which is imposed appropriately in the discretized form of the conservation equations. In the
present study, in order to avoid computational complexities all the grids were constructed so
that the grid lines were coincident with the boundary surfaces. Consequently extra uncertainties
and inaccuracies that would be introduced by interpolations are eliminated.
In contrast with previous implementations, the conservation equations were not solved inside

the solid part at all. The �ctitious cells that surround the �ow area were used to reproduce
the force term F instead of explicitly specifying forcing in each cell adjacent to a wall
boundary. Under these assumptions the implementation of the IMB concept ends up to a
consistent de�nition of boundary conditions. Proper de�nition of the boundary conditions on
the �ctitious cells was an adequate condition to ensure the resemblance of a solid boundary and
the application of the IMB method. For the present study, second-order boundary conditions
were used on all boundaries in order to maintain O(�x2i ) accuracy at the borders of the
computational domain.
In Reference [15] two di�erent methodologies were adopted and examined for the simulation

of a turbulent backwards facing step �ow. The IMB method was validated and compared with
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the domain decomposition approach using the Schur complement. Both methods used the same
direct pressure solvers and the di�erences in the predicted properties were less than ±2%.
Performance monitoring techniques revealed that the IMB method was faster by 30% and
required less physical memory. Bearing in mind that it can be easily extended to �ows in
arbitrary geometry the superiority of the IMB method is evident. The aim of the present paper
to demonstrate the potential of that method for time-varying �ows.

4. DESCRIPTION OF THE SIMULATIONS

Figure 1 shows the geometrical parameters and the co-ordinate system used for the test case
considered. The cylinder is of rectangular cross-section with side dimension d, immersed in a
uniform velocity stream u∞. The resulting characteristic Reynolds number was �xed to 22 000
for all simulations, for direct comparison with the experimental studies of Lyn et al. [20] and
McLean and Gartshore [21]. According to Reference [5], the dimensions of the computational
domain were (Li + Lx; Ly; Lz)= (20d; 4d; 14d). The rectangular cylinder was located with its
axis normal to the oncoming �ow at a distance 5d from the inlet plane.

4.1. In�ow–out�ow-lateral boundary conditions

A uniform stream u∞=1 was imposed at the domain’s inlet, while both perturbed and un-
perturbed cases were computed. The outlet plane was located 15 diameters downstream of the
body to allow the undisturbed development of the vortex street formation. In order to avoid
the distortion of the �ow structures leaving the domain and diminish the e�ect of the exit
upstream, the convective boundary condition was used [22] i.e.

@ui
@t
+Uc

@ui
@x
=0 (9)

which is very popular choice in LES computations of space developing �ows. The convection
velocity Uc was set equal to the free stream velocity u∞. Equation (9) is usually integrated

L
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d
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Figure 1. De�nition of the co-ordinate system and the geometrical
parameters for the plow past a rectangular cylinder.
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in time using an explicit approximation. In the present study an implicit Euler scheme was
used in time and an upwind approximation in space according to Simons [23].
Periodic boundary conditions were applied for all variables along the spanwise direction

(y) along the cylinder’s axis. For the direction (z) normal to the �ow symmetry conditions
were used, i.e. dU=dz=dV=dz=0 and W =0.

4.2. Solid wall boundary conditions

The numerical resolution used in most cases necessitated the use of an approximate wall
boundary condition since the wall region was not adequately resolved. A new approximate
wall boundary condition was constructed, which was �rst validated for simpler separating
�ows such as the �ow over a backwards facing step [15]. The local character of that boundary
condition emerges from the perfect correlation that is assumed between the resultant velocity
parallel to the wall of the �rst node closest to the wall |̃u|w and the instantaneous wall
shear stress �w at the elementary boundary surface. In that sense the wall boundary condition
resembles a ‘modi�ed’ Werner and Wengle [24] approach.
However, the wall boundary condition presented here promotes the generality and increases

the applicability and e�ciency of the method. Instead of a typical 17 power law [1] or a zonal
approach, Spalding’s [25] law of the wall was used which is valid from the sublayer to the
intermediate transition layer and up to the logarithmic region. Consequently, throughout the
boundary layer from the wall to the free-stream, the same physical law was applied in a
general manner. Additionally, the wall model is not based on a prede�ned velocity direction
but adjusts locally according to the local natural direction of the �ow.
Although the run time application cost of such methods is usually assumed negligible,

performance monitoring techniques in preliminary simulations revealed that due to the com-
putation of exponentials the computing load was as high as 10%. Therefore, it was decided to
precompute and store a ‘look-up’ table containing pair of values for |̃u|w⇔ �w. That way of
implementation reduced the computational load to less than 0:5% while the overall accuracy
of the method was sustained.

4.3. Initial conditions

The initial �eld for all simulations was a uniform stream u∞=1 superimposed with Gaussian
random divergence-free perturbations of intensity 2–5% w.r.t. the local value. The set of
equations was integrated for 200–250 characteristic times tc =d=u∞. After a transient time
the �ow rejected the initial unrealistic condition and the shear layers at the cylinder’s faces
initiated vortex shedding. Once the �ow indicated an established periodic behaviour, statistics
where collected for a period of 100tc and each sample was taken every 0:01tc. The period of
time corresponds to 10–13 shedding cycles, an adequate time interval to guarantee statistical
stationarity [1].

4.4. Computational grids

The grids used for the present study are summarized in Table I. Several numerical resolutions
were examined in order to assess the e�ect of the grid properties on the predicted �ow
�elds. The cylinder’s surface was covered from 480 up to 4800 cells. The grid dimensions
were similar to the ones presented in References [1, 5]. However, in the present study the
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Table I. Parameters of the grids used for the �ow around a rectangular cylinder.

Dimensions Cylinder’s Maximum resolution
Grid Nx×Ny×Nz resolution (�xmin ;�zmin)=d Number of cells Time step �t

G1 90×12×68 10×10 0.094, 0.100 73440 0.01
G2 120×12×90 14×14 0.070, 0.070 129600 0.005
G3 200×12×120 36×20 0.018, 0.041 288000 0.003
G4 400×16×200 112×38 0.0035, 0.02 1638400 0.001
G5 400×24×172 20×20 0.050, 0.050 1651200 0.002
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Figure 2. Streamwise and normal grid spacing for the simulations presented (Table I). (a) Grid spacing
�xi along x direction. (b) Grid spacing �zk along z direction.

number of cells resolving the streamwise direction with respect to normal direction is slightly
increased. This was done in order to produce isotropic grids with aspect ratios close to
unity.
The development of the direct pressure solver (described in Section 3) allowed the use of

stretched grids in both the streamwise and normal directions, a feature that proved extremely
useful for the �ne discretization of the �ow close to the cylinder surface. Figure 2 shows the
variation of grid spacing �xi and �zk along (x) and (z) direction. The minimum resolution
used in the study was 0:0035d while all the grids used were linearly stretched. The expansion
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Table II. Table of the examined cases, grids and wall boundary conditions used. Predicted force statistics,
average recirculation length, St number.

Case, Grid Wall BC Model CL CLrms CD CDrms St Xr

A1, G1 Wall Cs = 0:08 0.011 0.85 2.34 0.153 0.137 1.54
A2, G1 Wall Cs = 0:10 −0:002 0.78 2.22 0.145 0.134 1.81
A3, G1 Wall Cs = 0:12 −0:015 0.55 2.05 0.084 0.128 2.41
A4, G1 Wall FSF 0.008 0.79 1.96 0.167 0.130 1.68
B1, G2 Wall Cs = 0:10 0.009 0.91 1.99 0.236 0.120 1.44
B2, G2 Wall FSF 0.013 1.09 2.12 0.286 0.120 1.35
C1, G3 Wall Cs = 0:10 0.037 0.78 2.01 0.190 0.126 1.39
C2, G3 Wall FSF 0.026 0.84 2.01 0.190 0.126 1.39
D1, G4 No-slip Cs = 0:10 0.009 1.08 1.89 0.085 0.128 1.33
D2, G4 No-slip FSF −0:004 1.03 1.95 0.111 0.132 1.35
E1, G5 Wall Cs = 0:10 0.070 1.29 2.10 0.139 0.129 1.28
E2, G5 Wall FSF 0.011 1.39 2.15 0.165 0.129 1.38
Cheng et al. — — — 0.1–0.6 1.9–2.1 0.1–0.2 — —
McLean et al. — — — 0.7–1.4 1.9–2.1 0.1–0.2 — —
Lyn et al. — — — — 2.1 — 0.132 1.38

coe�cient was restricted to 1.03 in order to avoid rapid grid stretching and retain su�cient
numerical resolution at the domain’s exit.
The advantage of grid stretching in two directions is clearly shown in Table I if one

compares cases D and E which employ an equal total number of cells but very di�erent
resolution of the cylinder surface. Cases E1 and E2 use a uniform grid with 20× 20 cells on
the cylinder. On the other hand, the ability to use grid stretching in two directions in cases
D1 and D2 increased the cylinder’s resolution to 112×38 cells. These cases were the most
successful ones overall and due to the high resolution, they used no-slip boundary conditions
on the cylinder’s walls (Table II). Except cases D1 and D2 all the other cases used the wall
boundary condition described in Section 4.2.

4.5. Estimation of global parameters

The major parameters of comparison are the average length of recirculation region Xr and
the Strouhal number St which is closely related with the accurate reproduction of the vortex
shedding mechanism. The latter was as usually computed from the power spectrum of the
time history of the lift force coe�cient CL.
In order to evaluate Xr for such a time varying �ow, a time-averaged quantity �(x; z) was

de�ned [15] such that

�(x; z)=
1
T

∫ T

0

〈u〉(x; z)
|〈u〉(x; z)|

dt with 〈u〉(x; z) =
∫ Ly

0
u(x; y; z) dy (10)

i.e. based on the instantaneous space-averaged velocity along the periodic (y) direction. The
integral of Equation (10) can be easily computed in every location (x; z) and is directly
related with the probability of the main velocity to be positive (�(x; z)=1), or negative
(�(x; z)=−1). The locus where �=0 denotes an interface where the velocity was found to
be positive as many times as negative (Figure 3). Therefore, the function � is directly related
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Figure 3. Flow around a rectangular cylinder at Red = 22 000. Limits of the recirculation region �(x; z)
and streamlines of the time-averaged mean velocity �eld. (Grid 400×16×200, FSF turbulence model).

to the location of forward �ow fraction used by Le and Moin [26]. The above method of
estimating the recirculating region was very successfully used for other cases of wake �ows.
Apart from generality the method can be easily applied to the whole �eld and does not require
the pre-speci�cation of the area where recirculation is expected. It also gives the opportunity
to assess the detailed size and ambiguity of the recirculation area.

5. RESULTS

The cases presented here with their computational parameters are summarized in Table II.
Special cases were designed in order to examine the e�ects of the grid properties and turbu-
lence model. For all the grid resolutions, both models were used in order to compare their
predictive capability.

5.1. Global parameters and force coe�cients

As shown in Table II the frequency of vortex shedding—as indicated by the St number—
was found to be in very good agreement with the available experimental data. However, as
mentioned by Rodi et al. [1] the comparison of St numbers is not a safe indication of a
successful prediction overall. The results of the present study agree with that statement since
that parameter shows a limited sensitivity to the simulation’s parameters and for most of the
computed cases the predicted St number was very close to the experimental value of 0:13. It
was observed that the crucial parameter for an accurate prediction of the St number was the
grid density close to the cylinder and not the overall resolution. This is clearly indicated from
cases E1 and E2 where the inadequate wall resolution (20×20 cells) lead to an underestimation
similar to the one observed at much lower resolutions (cases B and C).
The time-averaged length of the recirculation region Xr was found to be more sensitive to

the simulation parameters. For the lower grid resolutions there was a tendency to overpredict
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Figure 4. Variation of streamwise, normal velocities and their rms values along the normal axis of the
cylinder (x=0). E�ect of grid re�nement using grids G1 and G4 w.r.t. experimental results. Symbols
(◦; ;�): Lyn and Rodi, lines: FSF model. (a), (b) Time averaged U , W , urms, wrms with grid G1, case

A4. (c), (d) Time averaged U , W , urms, wrms with grid G4 case D2.

the extend of the recirculation area.‡ Proper reproduction of the recirculation area was mostly
related to the spatial resolution on the cylinder’s surfaces especially in the direction of the
�ow. The shear layers forming on these surfaces and the wake forming after the body play
a critical role in the predicted �ow regime. Inadequate grid resolution of the shear layers
forming at the cylinder’s surface, leads to an overestimation of the recirculation length Xr .
The use of various resolutions indicated that for an acceptable estimation of Xr , a minimum
grid spacing of at least 0:07d should be considered on the surface of the cylinder.
As far as the force statistics of the lift and drag coe�cients are concerned, large deviations

were noticed. The prediction of their mean and rms values was closely related to the numerical
resolution of the shear layers and the use of wall functions. It was evident that insu�cient
wall resolution or the use of a wall function led to higher values for all the force coe�cients.
The only exception was the lift coe�cient CLrms which was predicted higher when no-slip
conditions were applied in cases D1 and D2. It is interesting to note that in cases A1–A3 the
increase of CLrms was related to a reduced recirculation length Xr . In turn Xr heavily depends
on the separation point along the upper and lower surfaces of the cylinder. As shown in
Figure 4(a)–(c) lower resolutions were associated with delayed separation. In these cases the
�ow remains attached on the cylinder surfaces further downstream. Hence, the pressure and

‡It is interesting to note that for other wake �ow cases such as backward facing steps, lower resolution leads to
an underestimation of the recirculation length.
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Figure 5. E�ect of the Smagorinsky constant Cs on the recirculation region �(x; z) forming behind the
body. Grid G1. (a) recirculation with Cs = 0:08 case A1, (b) Cs = 0:10 case A2, (c) Cs = 0:12 case A3.

lift forces �uctuate on the upper and lower surfaces in a smaller area leading to a reduced
value of CLrms .

5.2. Turbulence models

Figure 5 shows the e�ect of altering the value of the Smagorinsky constant from 0.08 to 0.12
for cases A1–A3 (Table II). The size of the recirculation area was found to largely depend
on the value of the Smagorinsky constant Cs especially at lower numerical resolutions. A
lower constant is associated with reduced energy dissipation of the main �ow, which in turns
promotes mixing and reduces the wake dimensions and vice versa. However, that tendency
recedes for higher resolutions where the model accounts for a narrower range of scales and
a smaller part of the total energy transport.
For the same reason the agreement between the two models improved signi�cantly using

higher resolutions. Figure 6 shows the comparison of the two models for the time-averaged
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Figure 6. Scatter plot comparing the predictions of the Smagorinsky and FSF turbu-
lence model for the time-averaged �ow quantities. A total of 80 000 predicted values for

U;W; urms; wrms are plotted for cases E1 and E2 using grid G4.

values using the grid G4. The agreement between the two models was in the range of ±5%
for most of the predicted values. The basic di�erence between the two models concerns the
predicted value of Xr . For all the computations the FSF model predicted a mean recirculation
length closer to the reference value of 1:38d.
For all the grids examined the FSF model performance was better when compared with

the Smagorinsky, in all the parameters of comparison. Additionally, it was always associated
with a reduced transient time for the onset of the periodical regime when the computation
was starting from scratch. The model was able to adapt faster to a more realistic turbulence
�eld rejecting the initial unrealistic solution. Therefore, its use reduced the total number of
iterations required for a complete computation.

5.3. Time-averaged velocity �eld

The e�ect of grid re�nement on the velocity distribution around the cylinder is illustrated
in Figures 4 and 7. For the lower numerical resolutions, the boundary layers forming on
the upper and lower walls were less energetic (Figure 4(b)) and tended to separate fur-
ther downstream (Figure 4(a)). That delay is responsible for the increased recirculation
area predicted with coarser grids. For the same reason the location of peak �uctuations
in the cylinder’s wake is displaced downstream using lower grid resolutions (Figure 7(b)).
For the �ner grids the location and magnitude of maximum �uctuations are very
accurately reproduced showing excellent agreement with the experimental datasets
(Figure 7(d)).
The recovery of the mainstream velocity at the core of the wake is shown in Figures 7(a)

–(c). Using a �ner grid the velocity recovers faster after the cylinder but stabilizes in higher
levels when compared to the experiment. In the experimental results the velocity along the
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Figure 7. Variation of streamwise, normal velocities and their rms values along the �ow direction
(z=0). E�ect of grid re�nement using grids G1 and G4 w.r.t. experimental results. Symbols (◦; ;�):
Lyn and Rodi, lines: FSF model. (a), (b) Time averaged U , W , urms, wrms with grid G1, case A4. (c),

(d) Time averaged U , W , urms, wrms with grid G4 case D2.

centreline levels o� at 0:62u∞ at a distance x¿4d. In the majority of the calculations per-
formed for the present study, the velocity in the same region was predicted higher; around
0:84u∞ irrespectively of the computational parameters. That same di�erence was also noticed
in previous studies conducted for the test case considered [1, 5].
Figures 8 and 9 show the comparison for the mean and �uctuating components of the

time-averaged �eld with the experimental data for cases D1 and D2. The agreement for the
streamwise and normal velocity components (Figure 8) is excellent throughout the �eld. This
is also illustrated in Figure 10 that compares contours of streamwise and normal velocities
with interpolated experimental data of Lyn et al. [20]. The only di�erence is observed in
the core of the �ow far away of the cylinder. As mentioned above, the simulations predict a
faster core of the �ow at the centreline. However, further away from the core of the wake,
for distances |z|¿2d that di�erence is eliminated.
As far as the �uctuating components are concerned (Figure 9) the agreement is very

satisfactory throughout the �eld. The width of the wake resembles the one suggested by
the experimental data. That agreement is also observed on the upwind face of the cylin-
der although in the particular case the oncoming �ow was unperturbed. The inclusion of
a random forcing of intensity 2% at the inlet velocity pro�les, did not alter signi�cantly
the statistics of the simulated �ow. The only e�ect observed was the faster transition to
the time periodic regime, when compared with simulations involving a uniform
inlet.
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Figure 8. Comparison of the time-averaged streamwise and normal velocity U , W at
various locations for the two turbulence models w.r.t. experimental results. (•): Lyn and

Rodi (1994),(−−−): Case D1, Cs = 0:1, (−−−): Case D2, FSF.

Figure 9. Comparison of the time-averaged streamwise and normal velocity �uctuations urms,
wrms at various locations for the two turbulence models w.r.t. experimental results. (•): Lyn and

Rodi (1994), (−−−): Case D1, Cs = 0:1, (−−−): Case D2, FSF.
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Figure 10. Contours of mean and �uctuating components of streamwise and normal
velocities compared with the interpolated experimental data. Solid lines: Lyn et al. [20].

Dotted lines: Case D2, no-slip wall boundary condition, FSF turbulence model.

6. CONCLUSIONS

Turbulent �ow past a rectangular cylinder has been investigated as a benchmark test case for
the development of an e�cient parallel code in the frame of large eddy simulations. Apart
from the special geometrical treatment applied, the development of a direct parallel pressure
solver suitable for complex �ows proved to be crucial and bene�cial for the e�ciency of the
numerical code. Combined with the geometrical �exibility o�ered by the immersed boundary
method, low cost computations on grids of the order of several million points were carried
out. The underlying philosophy of the numerical design and implementation was ‘simpler
and much cheaper steps in space and time performed in parallel’ which led to a�ordable
large-scale computations.
The overall agreement with the experimental database was very promising for most of the

computed cases. Grid sensitivity studies revealed that for the �ow case considered the quality
of the simulation results largely depends on the resolution of the �ow region close to the cylin-
der’s surface. The e�ect of grid re�nement was the strongest of the computational and physical
parameters examined. Insu�cient grid resolution of the shear layers forming at the cylinder’s
surfaces, lead to an overestimation of the recirculation area and the drag coe�cient CD.
For global quantities such as recirculation length and Strouhal number the resolution of the

cylinder cross-section with 20×20 cells should be considered as minimum. Even in such a
low resolution case though, the use of the wall boundary condition described in Section 4.2
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led to a very promising agreement with the experimental results. The �uctuating components
of the velocity �eld and the Reynolds stresses required grid spacing smaller than 0:2d in the
whole �led for satisfactory agreement.
Using higher resolutions several coherent structures were identi�ed during the shedding

process. Apart form the main vortices shed from the cylinder, streamwise structures connecting
the vortices (‘�ngers’ according to Jordan and Ragab [27]) were also regularly observed [28].
Comparing the predictions of the two turbulence models tested, it appears that the FSF

model reached better agreement with the experiments, for all the cases examined. The superi-
ority of the FSF model was mainly due to its ability to account for the transitional character
of the �ow.
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